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Thermal stability of theG37 tRNA methyltransferase proteins from Thermotoga maritima 

and Aquifex aeolicus have been compared using Differential Scanning Calorimetry. It was 

shown that the Thermotoga protein is remarkably stable and is denatured at temperatures in 

excess of 100 degrees Centigrade. The Aquifex aeolicus protein was less stable, denaturing 

broadly at temperatures between 55
o
C and 100

o
C. In contrast, the mesophilic E. coli protein was 

completely denatured at 55
o
C.  

 Enzymatic activity of the proteins was measured at various temperatures. Both the 

Thermotoga and Aquifex enzymes are active at ambient temperatures, and display a significant 
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decrease in activity when the temperature is raised above 50
o
C.  This may relate to subtle 

changes in protein structure causing an effect on the tRNA based assay.  

Both enzymes contain inter subunit disulfide bonds which might contribute to thermal 

stability. Assays of the enzymes in the presence of high concentrations of Dithiothreitol (DTT) 

did not significantly reduce activity at higher temperatures, but did stimulate activity at lower 

temperatures. 

Site directed mutagenesis of non -conserved protein sequences within Thermotoga 

maritima were initiated in order to determine what structures might confer heat stability on the 

protein. Alanine mutagenesis of lysine residues 103,104 led to reduced catalytic activity, but did 

increased activity at higher temperatures.  Aspartate is the most common residue at the relative 

position 166 in the variable loop of most TrmD genes. It has been shown that in E. coli this is 

essential for catalytic activity and possibly the residue which carries out N1 deprotonation on 

residue G37 in tRNA. In Thermotoga glutamate is present at this position. Alanine mutagenesis 

of this residue did not eliminate activity suggesting another nearby residue may function in this 

capacity in the Thermotoga TrmD protein.  
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Background 

 

The process of adapting and conforming to new environments through selection resulting 

in gradual changes which permit the survival of an organism is called evolution. Over the past 

few decades, scientists have been examining various extremophile genomes in an attempt to 

unravel structural conformations and sequences that lead to heat stability. There are two broad 

categories of thermophilic bacteria, including those which grow optimally at 50
o
C – 80

o
C and 

others that grow between 80
o
C - 110

o
C.Recently, the upper limits of growth temperatures have 

been extended with the discovery of a new strain of bacteria called 121 (Kashefi & Lovley, 

2003). The bacterial strain 121 was given the name by its discoverers for the highest temperature 

at which it can grow, 121
0
C. The previous upper limit limitation was held by another 

thermophilic organism Pyrolobus funarii which has been shown to grow at 113
o
C (235

o
 F). The 

scientists discovered that Strain 121s growth range is from 85-121
o
C while viable cell counts of 

Pyrolobus fumarii slowly decayed after an hour at the same temperature leaving only 1% of the 

cells viable. 

 "The upper temperature limit for life is a key parameter for delimiting when and where life 

might have evolved on a hot, early Earth; the depth to which life exists in the Earth's subsurface; 

and the potential for life in hot, extraterrestrial environments"(Kashefi & Lovley, 2003).  

There is thought to be a limitation placed on the extremophile life that prevents growth 

after 140
o
C because at this temperature cellular metabolites and amino acids become highly 

unstable and degrade. How the thermophiles are able to thrive in boiling water is based on the 

protein composition. Research has shown that there are various components of structure that 

allow for the stability of thermophilic proteins at higher temperatures. 
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Initially scientists proposed that the one adaptation thermophiles made to survive is an 

increase in the GC content of the DNA. This was termed the thermal adaptation hypothesis and it 

predicts that large positive contrasts in temperature should be matched by large positive 

differences in GC content. G-C base pairs offer three hydrogen bonds in comparison to the A-T 

base pairs which only form two hydrogen bonds. In addition base stacking is perhaps the biggest 

factor contributing to helical stability. The earlier data analysis of this theory seemed to prove 

that it had some validity, but in 2001 it was shown that high G-C content is not a direct 

indication that an organism would be able to withstand higher temperatures (Hurst,L.D. 2001) 

and that protein stability was of course an obvious factor to consider in thermostability. A 

protein‟s three dimensional structure is known to be very complex involving various inter and 

intra molecular bonds. The very same interactions present in mesophilic proteins can be found in 

thermophilic proteins. The protein is a network of amino acids whose secondary and tertiary 

structure is dependent on the primary sequence. The process of folding occurs in 3 known stages 

beginning with the unfolded protein which undergoes a hydrophobic collapse. This stage of 

protein folding samples 10 
16 

conformations and is defined by not containing any secondary 

structure, exposed hydrophobic areas and being fully extended. The next stage known as the 

molten globule samples 10 
10 

conformations contains elements of secondary structure, tends to 

have some degree of hidden hydrophobic areas and is more compact in comparison to the 

unfolded state. The native protein only has one conformational state, is catalytically active, and 

contains elements of secondary and tertiary structure. The process of properly folding a protein 

cannot be said to occur spontaneously, and it has been known since the 1980s that many proteins 

require the aid of molecular chaperones. Chaperones are known to act using two mechanisms, 

the first used by HSP70, involves maintaining the polypeptide chain in a state capable of 
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productive folding which occurs spontaneously after the unfolded protein is released in solution. 

The second mechanism used by chaperonins, which contain large cylindrical complexes that 

create physically isolated compartments designed for the proper folding of polypeptides and 

misfolded proteins (Nagradova,N.K. 2004) 

In terms of protein stability under extreme conditions, the literature reveals a variety of 

structures found in proteins which might maintain stability at high temperatures. Interestingly, 

structures which might stabilize proteins under extreme conditions are found in mesophiles as 

well. This makes it slightly more difficult to discern exact mechanisms that thermophiles use to 

maintain their functionality at higher temperatures. Various methods including hydrophobic 

interactions, disulfide bonds, ion pairs (salt bridges), subunit-subunit interactions, hydrogen 

bonding, post translational modifications, metal ion bindings, and extensive packing reducing 

solvent accessibility to hydrophobic regions that are all seen in both mesophilic and thermophilic 

proteins. 

Information from various publications suggests that salt bridges play a pivotal role in 

maintaining the stability of thermophilic proteins. A recent publication in 2004 used molecular 

dynamics to further explore the role of salt bridges in thermo stability and also compared the 

results to other interactions at higher temperatures. The simulations which measured the contact 

frequencies of atom pairs were performed at 25, 50, 75, and 100 °C. Results of the simulations 

demonstrated that the number of salt bridge contacts between the two molecules are unaffected 

by the temperature while hydrophobic and polar contacts are diminished (Thomas,A.S. 2004). 

Furthermore the group used a second study which used prototype molecules in order to further 

examine hydrophobic polar and salt bridge interactions and compare the results to the individual 

atom pair simulations. This study found that the interactions between the salt bridges actually 
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increase in stability at 100 °C in comparison to 25 °C (Thomas,A.S. 2004). This information is 

also supported by a recent publication in JBC by (Ge,M. 2008). Ge demonstrated via a double 

mutant cycle (DMC) that the free energy of Ssh10b, a DNA binding protein, decreases with 

increases in temperature while the contribution of the salt bridges to protein stability remain 

constant. The study also showed that the energy contribution of a salt bridge between two 

residues farther apart in primary sequence is higher than that of two residues which are closer in 

primary sequence. 

Disulfide bridges, previously mentioned are believed to enhance thermal stability in 

proteins by providing a strong covalent interaction. This interaction is thought to restrict the 

protein making it more rigid and locking it into certain conformations. Looking more in depth at 

proteins that contain disulfide bonds the TrmD protein of Aquifex aeolicus contains a cys20-

cys20 disulfide bond that tethers the two monomeric subunits together. In 2008, a study done by 

(Toyooka,T. 2008) demonstrated via SDS-PAGE that the disulfide bond of the TrmD protein 

found in A. aeolicus, can be separated by Dithiothreitol (DTT). Also, a mutant was prepared by 

substituting the Cys20 for a Ser preventing the formation of the disulfide bridge which links the 

two monomeric subunits together. The mutant was also subjected to the SDS-PAGE experiment 

while increasing the concentration of DTT; the results of this experiment showed that the protein 

never formed a dimer and migrated on the gel in its monomeric form. Studies in that paper were 

inconclusive with regard to the effects of the disulfide bond on enzymatic activity at increased 

temperatures.  

Hydrophobic interactions have been studied to determine their role if any in the stability 

of thermophilic and hyperthermophilic proteins. Several comparative studies have been 

performed on both mesophilic and thermophilic proteins to look at the significance on 
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hydrophobic interactions and also to determine if one particular amino acid plays a major role in 

hydrophobic interactions. Computational analysis of proteins in 2008 by (Paiardini,Alessandro 

2008) searched for hydrophobic pockets in mesophilic and thermophilic proteins to determine 

which amino acids, if any, played a role in thermophilic stability. The study showed that 

isoleucine and valine residues are shown to have preference in hydrophobic contacts. It was 

further stated that the residues possibly enhances thermostability of a-helices in 

hyperthermophilic proteins by decreasing the flexibility of those elements of secondary structure 

Paiardini,Alessandro 2008). 

Looking further into heat stability, the subunit-subunit interactions may play a crucial 

role in heat stability by maintaining the quaternary structure of the proteins by using the methods 

of disulfide bonds, salt bridges, hydrogen bonds and hydrophobic pockets (Maugini,Elisa 2009). 

Maugini used a comparative approach to detect the significant structural differences between the 

subunits interfaces of hyperthermophilic, thermophilic and mesophilic homologous proteins. 

Comparative studies such as this usually suffer some statistical noise which arises from a small 

sample size, genetic drift and physiological adaptations, all of which must be subtracted out. The 

results of the study showed that the number of interface hydrogen bonds decreases in 

thermophiles indicating that they are not essential for maintaining the stability of the interface. 

This is expected because it has been shown that hydrogen bonds become weaker as the 

temperature increases. The role of hydrogen bonds has been a topic of immense controversy as 

they may only play a minor role in heat stability. Similar results were seen when looking at the 

ion pairs between subunits as the number of ion pairs seen did not vary significantly at the 

interfaces of thermophilic proteins. Though when looking at data from Thermotoga maritima 

there was a significant increase in the number of salt bridges relative to the protein length. Based 
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on the data of (Maugini,Elisa 2009) it was noted that extremophiles display a relative increase of 

interfacial ion pairs but the magnitude of the variations are not significantly larger than 

differences observed in homologous mesophilic proteins. 

Another factor that can thermally stabilize an enzyme involves the anchoring of the loose 

ends of the protein. The carboxy and amino termini are commonly found anchored to the protein 

core in thermophilic organisms. This specific mechanism was examined when looking at 

Thermotoga maritima’s ferridoxin protein, showing that the changes add to the thermostability 

of the protein. The study came to the conclusion that by anchoring the loop via ion pairs, 

hydrogen bonds and hydrophobic interactions with the protein core lead to the enhanced 

thermostability of the protein. Linking the ends of the protein contributes to the overall 

compactness of the protein, preventing the ends of the protein from moving vigorous moving 

when the temperature is increased.  

In this study we will compare and contrast two thermophilic TrmD enzymes with that of 

E. coli with regard to effects of temperature on enzymatic activity and the unfolding of these 

proteins measured by Differential Scanning Calorimetry. 
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The Organisms 

Thermotoga maritima 

Thermotoga maritima, found in figure, 1 is a thermophilic organism first discovered 

amongst the geothermal heated sediment of Mount Vesuvius in Naples, Italy. It has an optimal 

growth temperature of 85
o
C and is known to metabolize various carbohydrates both simple and 

complex including glucose, sucrose, starch, cellulose and xylan. Genomic analysis of T. 

maritima using the Institute of Genomic Research database indicates that the organism has a 

single circular chromosome consisting of 1,860,725 base pairs with a GC content o 46%.  

 Various articles and reviews point out that the proteins from thermophilic organisms such 

as Aquifex aeolicus and T. maritima have a wide range of optimal temperatures varying 

from50
o
C to 120

o
C. It has also been noted that thermophilic and hyperthermophilic enzymes do 

not function well below 40
o
C (Vieille,C. 2001). 
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Figure 1: Ultrathin Micrograph of Thermotoga maritima 

Figure 1 is an illustration of the Thermotoga maritima organism. Clearly visible in this 

photograph is its characteristic “Toga.” 
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Aquifex aeolicus 

Aquifex aeolicus grows in extremely hot temperatures, near volcanoes and hot springs. It 

has been isolated in the hot springs of Yellowstone National Park. It grows optimally at 80 
o
C, 

but can grow in temperatures up to 95 
o
C A. aeolicus is about 2.0-6.0 micrometers in length and 

has a diameter of 0.4-0.5 micrometers. The enzymes this organism uses for aerobic respiration 

are similar to the enzymes found in other aerobic bacteria. A. aeolicus oxidizes hydrogen gas and 

uses oxygen as the final electron acceptor in this process. The final product of its respiration is 

water, Aquifex meaning “water-maker” (Deckert,G. 1998). A. aeolicus can reduce and fix 

nitrogen and sulfur as well as hydrogen, and in sulfur and thiosulfate metabolism it produces 

sulfuric acid and H2S. A. aeolicus has not been shown to grow anaerobically on nitrogen 

like Aquifex pyrophilus; however, it is microaerophilic, needing only 7.5 ppm oxygen for 

respiration (Deckert,G. 1998). 

The circular genome of Aquifex aeolicus is about one third the size of E. coli’s containing 

1,551,335 base pairs with a G-C base pair content of 43.47%. About 16% of its genes originating 

from Archea (Deckert,G. 1998). The organism contains 1778 genes, 97.18% of which (1728) 

code for proteins. Aquifex aeolicus is a chemolithotrophic organism which uses an inorganic 

carbon source (carbon dioxide) for biosynthesis and as an inorganic chemical source.  

The literature reveals that many of the proteins isolated and characterized from 

thermophilic organisms tend to show optimal activity at temperatures at 50
o
C and has even been 

seen as high as 120
o
C (Vieille,C. 2001; Vieille,C. 1996). These enzymes, more commonly 

referred to as thermozymes, share catalytic mechanisms with their mesophilic counterparts. 

When cloned and expressed in mesophilic hosts the thermophilic proteins usually retain their 

thermophilic properties, indicating that thermostability is genetically encoded. Sequential 
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analysis via amino acid comparisons, sequence alignments, and crystal structure comparisons 

show that thermophilic and mesophilic enzymes are very similar. In fact, there are no obvious 

structural or sequential features that account for thermostability, and the molecular mechanisms 

that provide thermostability vary from enzyme to enzyme.  

tRNA N1G
37

methyltransferases (TrmD), extensively characterized by this laboratory, 

were derived from several organisms to include those from Escherichia coli, Staphylococcus 

aureus, Thermotoga maritima, and Streptococcus pneumonia. Various experiments have been 

used to characterize each of the proteins from enzymatic assays, crystallization and binding 

studies in order to gain insight into structure and function of the enzyme. 

The TrmD enzyme functions as a dimeric protein in bacterial species and is observed as a 

monomeric protein in eukaryotic species. The enzymes function is to methylate specific tRNA 

molecules that have a G at position 36 and also recognize codons beginning with C such as 

leucine, proline and arginine (O'Dwyer,K. 2004). This is an important function because it has 

been shown that methylation at the G37 position prevents frame shift mutations (Qian,Q. 1997). 

A study performed by (Persson,B.C. 1995) demonstrated that a trmD deficiency caused a 

decrease in the rate of growth by several fold when compared to the non mutated enzyme. It was 

also noted that the hypomodified tRNA reads a four letter codon instead of the conventional 

three letter code thus resulting in the frame shift mutations that may lead to non functional 

proteins. The non functional proteins may be the possible cause for the decrease in the growth 

rate observed. Since the Guanine-37 immediately follows the anticodon loop, it has been 

proposed that N1 methylation prevents Watson and Crick base pairing in that position thus 

preventing the recognition of four lettered codons, thus preventing prevent frame shifting. The 

methyl donor for this reaction is S-adenosyl-methionine both in vitro and in vivo. 
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INTRODUCTION 

 

 In order to examine the heat stability of the A. aeolicus TrmD protein, experiments were 

designed based on previous work performed on the T. maritima TrmD enzyme. The Aquifex 

aeolicus TrmD protein were initially studied because it is the only thermophilic protein for which 

a crystal structure has been solved.  Densities for The variable loop within the protein were not 

detected suggesting that this portion of the peptide backbone was very mobile in the structure.  

For these studies, a variable loop was modeled and inserted into the PDB file. Because of the 

similarity between the A. aeolicus TrmD and the T. maritima TrmD primary structure and 

because all TrmD proteins studied thus far are very similar in secondary structure, we decided to 

model the T. maritima protein to that of the A. aeolicus. This simulated structure was felt would 

be a good guide for the examination of primary structural elements that might be important for 

thermostability.  

Comparative analyses of the crystal structures for these two enzymes, E. coli and 

Aquifex, showed that the carboxy terminal domains of the A. aeolicus enzyme differed markedly 

from that of the E. coli (Mesophilic) counterpart. Due to the fact that Thermotoga maritima and 

Aquifex aeolicus appear to be in closely related to each other on the evolutionary tree, it was 

assumed that the TrmD structures would be similar. Figure 2 displays a triple overlay of A. 

aeolicus, T. maritima and E.coli TrmD proteins.  It is clear that the structures of all of the 

proteins are strongly conserved. Various studies using the Escherichia coli TrmD proteins have 

shown that upon deleting the final twenty amino acids catalytic activity; however, deletion of 

additional residues from the terminus drastically reduced or eliminated catalytic activity 

(Elkins,P.A. 2003). The T. maritima TrmD enzyme contains a disulfide bridge located in the c-

terminus of the enzyme and is thought to increase the thermal stability of the protein. Cystine 
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245 is definitely a candidate for site directed mutagenesis in order to determine, if it in fact plays 

a role in heat stability of the T. maritima TrmD. Also bench top experiments involving the use of 

DTT to break the disulfide bond may be employed as an alternative.  

 To select other candidate residues for mutagenesis the Expasy.org Swiss model program 

was employed (Arnold,K. 2006; 37 Kiefer,F. 2009). A comparison of TrmD primary structures, 

figure 3, reveals two lysine residues which were found only in two thermophiles A. aeolicus and 

T. maritime. But not in either other Mesophilic sequences such as those of E. coli or the 

Staphylococcus TrmD enzymes. These residues (lysines, 103 and 104) of the T. maritima 

enzyme are located on the surface of the amino terminus and therefore may to be capable of 

interacting with surrounding water molecules. 
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Figure 2: Model(Chimera 3-D) of a Triple overlay of A. aeolicus subunits A (white)B (purple), 

E. coli chain A (turquoise) and B (yellow), and the modeled, hypothetical structure of T. 

maritima chains A and B (both in red). 
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A comparison of the three dimensional structures for Thermotoga maritima, Aquifex 

aeolicus (figure 4) and Escherichia coli (figure 5) demonstrates that the distribution of 

hydrophobic regions is different. A common hydrophobic region found in all TrmD proteins is 

located at the dimer interface.  The hydrophobic region of Thermotoga maritima (figure 6) and 

Aquifex aeolicus (figure 7) contain a greater hydrophobic density when compared to that of E. 

coli (Figure 8). It has been proposed that an increase in hydrophobicity within a protein can 

contribute to the stability of the protein.  Therefore, disruption of the hydrophobic region located 

at the dimer interface via mutagenesis might reduce thermostability. For example, Phenylalanine 

is known to be a very hydrophobic amino acid and it is located within the dimer interface of the 

T. maritima, these characteristics made it a candidate for mutagenesis(Maugini,Elisa 2009; 25 

Paiardini,Alessandro 2008). 

Salt bridges play a key role in the maintenance of protein stability and/or thermal 

stability. In order to determine the significance of salt bridges within the protein, select residues 

involved in these bridges in A. aeolicus and T. maritima could be mutated to determine if the 

thermal stability is affected.  

In a previous study from this laboratory it was shown that an Aspartate residue in the 

variable loop of the E. coli enzyme was probably required for deprotonation of the G37 residue. 

Aspartate 169 of T. maritima was selected as a possible residue for mutagenesis to determine if it 

might play a similar role in that organism.  
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Fig 3 Sequence comparison of various TrmD proteins displaying the strong homology between 

the various protein sequences 
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Figure 4. A. aeolicus Crystallographic structure. The unstructured region shown has been 

modeled to provide a more complete model of the protein, highlighting key structures to provide 

reference points 
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Figure 5 E. coli Crystallographic structure obtained from NCBI‟s database 

provides a means to compare various TrmD structures 
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Figure 6.T. maritima structure illustrating hydrophobic regions done using Chimera program 

(UCSF). The globular areas display areas of hydrophobicity within the core of the protein 
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Figure 7. Hydrophobic regions of the A. aeolicus TrmD protein performed by using Chimera 

program (UCSF). The globular areas display areas of hydrophobicity within the core of the 

protein 
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Figure 8 E. coli hydrophobic model constructed using the Chimera program from UCSF. The 

globular areas display areas of hydrophobicity within the core of the protein   



www.manaraa.com

35 
 

 
 

 

 

 

  



www.manaraa.com

36 
 

 
 

Disulfide bonds were observed in both of the thermophilic enzymes are located in 

different positions; in A. aeolicus the bond is located at the subunit interface while in T. maritima 

it is located at the c-terminal end of the protein. Experimental analysis has shown that by 

increasing the amount of DTT (Dithiothreitol), one can separate the protein into its individual 

subunits which can be seen via native gel electrophoresis (Bruggeman, 2004). The creation of a 

Disulfide bond via mutagenesis at the c-terminus of the A. aeolicus enzyme, might link the 

subunits in two places, one at the subunit interface and the other at the c-terminus. This cross 

linking might increase the amount of disulfide bonds and test the theory that increasing the 

disulfide bonds increased the thermostability of the protein. 

Previous evidence suggested that the T. maritima TrmD enzyme was active at higher 

temperatures of 60 and 70 
o
C (Brueggemann, 2004). In addition it was reported that the enzyme 

was much less active at ambient temperatures. Because Aquifex aeolicus is also a thermophile, 

we wished to determine if the TrmD enzyme there from enzyme might have a similar 

thermophilic profile. Given these considerations experiments were designed to compare and 

contrast these enzymes with regard to thermostability. 
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Materials and Methods for TrmD Characterization 

Bacterial Growth and culture preparation 

 

Each liter of broth was prepared by adding 25g of granular LB-Broth from Fisher to 1 

liter of deionized water. The media was then autoclaved and ampicillin was added at a final 

concentration of 50ug/ml in the case of T. maritima and in reference to A. aeolicus50ug/ml of 

Kanamyacin was added. Usually 25 -30 ml of this medium was used to make a starter culture by 

overnight inoculation with the desired strain. On average, four liters were grown at a time in the 

case of A. aeolicus in order to obtain a good yield. On the other hand, 32 liters of T. maritima 

protein was prepared in a large fermentor separated into aliquots and placed in the-80 degree 

freezer until needed. 

All cultures were grown to an optical density between 0.6 - 0.8 at a wavelength of 

600nm, then induced with 1mM isopropyl β-D-thiogalactopyranoside (IPTG)  overnight with 

continuous shaking. The resulting cells were harvested by centrifugation at 5000g for 10 minutes 

which resulted in a pellet. The cellular pellets were resuspended in the lysis buffer, which 

contained 300mM NaCl, 50mM pH 7.6 phosphate buffer and 10mM Imidazole. Other pellets 

were stored in the -80 freezer until needed 

Purification 

 

The cellular pellets were then lysed using a French Press, followed by another 

centrifugation at 8500 rpm for 30 min. to separate the cellular debris from the crude cellular 

extract. In order to isolate our proteins from those in the crude extract, they contain a His-tag so 

we are able to selectively bind the protein using a Ni-NTA nickel column from Qiagen. The 

column is washed with wash buffer containing 50mM NaCl, 50mM pH 7.6 phosphate buffer and 
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10mM imidazole, to remove any non specific binding. The absorbance at 280 nm was monitored 

and allowed to reach an OD of .01 before the desired protein was eluted in order to ensure 

sample purity. The protein is eluted with a buffer consisting of 50mM NaCl, 50mM pH 7.6 

phosphate buffer and 250mM imidazole. Fractions of the elutant were collected and the protein 

concentration was measured using UV absorbance at 280nm. Because imidazole can interfere 

with the UV reading it is removed by means of dialysis, the dialysis buffer consists of 50mM 

Sodium Phosphate buffer, 50mM NaCl, .5mM Dithiothreitol (DTT) and 10% glycerol. Glycerol 

and DTT were used to help stabilize the protein and decrease the degradation of the protein after 

it was made. The purity of the protein was determined via sodium dodecyl sulfate 

polyacrylamide gel electrophoresis. 

SDS Polyacrylamide Gel Electrophoresis (SDS Page) 

 

The SDS Page gels initially corresponded to a protocol designed by laemmli which 

consisted of a 12.5% acrylamide separating gel and a 4.1% stacking gel. This protocol was 

altered slightly by our lab to consist of a 12.5% acrylamide separating gel and a 10% stacking 

gel. The laboratory uses “the petit gel” protocol, which generates a gel that fits into a 10x10cm 

gel rack with a thickness of .75mm. The protein samples to be analyzed are pretreated by adding 

the appropriate amount of 2X SDS loading buffer consisting of 100mM Tris pH6.8, 20% 

glycerol, 4% SDS, 200mM DTT and .1% Bromophenol Blue. The protein was then denatured by 

placing the sample into boiling water for 5-7 minutes. The SDS PAGE running buffer used in the 

experiments contained 25mM Tris, 190mM glycine, and .02% SDS. 15- 30 ul of the denatured 

sample in the sample buffer is loaded into a selected well and run at a constant voltage of ~80mV 

at room temperature. The bromophenol blue added to the sample buffer is used as a marker to 

determine when to stop the gel. Once the dye forms a band at the bottom of the gel the 
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electrophoresis was stopped by decreasing the voltage to 0. The gel is then stained with a 

coomassie brilliant blue solution that consists of 50% H2O, 40% Methanol, 10% acetic acid, and 

.05% coomassie brilliant blue R250. Following this step the gel is destained with a solution 

containing 70% water, 20% methanol, and 10% acetic acid removing the coomassie brilliant blue 

from the gel. 

Plasmid Isolation 

 

Plasmid DNA from both the wild type enzymes and mutants were isolated using the 

Qiagen mini and midi Kit along with the reagents and protocols necessary. The kits generate 

between 20ug and 100ug of DNA, sufficient for sequencing and transformation and mutation 

reactions. Upon completion of the protocol the resulting plasmid isolated was eluted with dH2O 

and stored at -20
o
C. The plasmid that was isolated from both the A. aeolicus and T. maritima 

protein was sequenced by DNA CORE laboratory to ensure validity for future experiments and 

mutagenesis. 

Site Directed Mutagenesis  

 

Mutations were carried out using the Stratagene QuikChange kit II, and the primers were 

designed using the guidelines provided in the Quick Change protocol. The Stratagene site 

provided a free primer design program that automatically designed the mutation desired based on 

the requirements of the protocol which include proper melting temperatures, limited stem loop 

formations and ideal GC content. The derived primers created were used in a Polymerase Chain 

Reaction (PCR) protocol. The 3‟ and 5‟ primers containing the mutation were obtained from 

STRATAGENE. The site directed mutagenesis protocol was edited to increase the elongation 

phase to 2 min/kB. After the mutagenesis protocol was complete DPN-1 was added to the sample 
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in order to degrade the parental strands of DNA. DPN-1 recognizes the methylated DNA of the 

parental strands and degrading it, the suggested amount of DPN-1 was 1 ul but better results 

were obtained using 3 uls. The suggested incubation time of an hour was not altered and 

following the digestion the plasmid DNA was stored at –20
o
C for further experimentation such 

as transformation reactions.  

Transformation Reaction 

 

Plasmids generated from the site directed mutagenesis reaction were transformed into 

XL-1 competent cells. Since the XL-1 cells do not express protein, plasmid isolated from the 

XL-1 cells was transformed into chloroamphenicol resistant Rosetta® cells encoding rare tRNA 

species. To ensure the validity of the mutagenesis, plasmids isolated from the XL-1 super 

competent cells were sequenced. Subsequently, plasmids were placed in the Rosetta cells for 

protein production. 

Enzyme Activity Assay 

 

 Enzyme activity was determined using a modification of the method developed by of 

Hjalmarsson et al.(31). 50 µl of reaction mixture consists of 50 µM cold SAM, 1.8 µl of hot 
3
H-

SAM (specific activity 85 Ci/mmol) , buffer (0.1 M Tris-HCl pH 8.5, 1 mM DTT, 0.1 mM 

EDTA, 6mM MgCl2, 24 mM NH4Cl and ~20 ug of enzyme and variable amounts of bulk tRNA, 

E. coli or T. maritima tRNA transcripts. The assay for the Thermotoga maritima TrmD protein 

was conducted at 60
o
C or 70

o
C. The enzyme reaction was allowed to proceed for four minutes. 

Following four minutes, the reaction was stopped by adding 200ul of ice cold tri-chloro-acetic 

acid (TCA) and placed on ice for 15 minutes. This treatment ensured that  all of the tRNA is 

completely precipitated out. The reaction mixture was loaded onto a filter paper and vacuum 
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filtration performed with TCA washes to remove excess labeled AdoMet from the GF-A 

Whatman filter paper. The filter paper was then dried with 100% ethanol and activity measured. 

The filter paper retains only radioactively labeled tRNA and thus can be counted via a 

scintillation counter. The machine used in this lab is the Packard Tri-Carb 1500 Liquid 

Scintillation Analyzer.  

Heat Inactivation Experiments 

 

 This following experimental procedure was used to determine the relative heat stability of 

both wild type TrmD protein and the mutant proteins that were created. In order to generate a 

heat inactivation curve, we placed the TrmD protein into a water bath at various temperatures to 

determine at which temperature is the protein stable, and at various time points enzyme aliquots 

were removed for assay at the assay determined optimal temperature or each wild type enzyme. 

Aliquots of proteins were removed in 15 min intervals of0 minutes, 15 minutes, 30 minutes, 45 

minutes, 60 minutes, and a control was also used to determine baseline readings which contained 

no enzyme. 

Differential Scanning Calorimetry 

 

This method was utilized to determine the melting temperature of the TrmD proteins. 

Differential Scanning Calorimetry (DSC) is a method commonly used to determine differences 

in melting temperatures under a variety of conditions. The method was first introduced by 

Privalov and Filimonov whose research was used to prepare an appropriate buffer system and 

used as a guide for our studies. The samples were all placed into a 100mM NaCl and 50mM 

Phosphate pH 7.5 solution. DSC machines compare the heat capacities of two liquid containing 

cells and plot the amount of energy needed to heat the cell to a specified temperature. Buffer was 
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added to the reference cell to eliminate the background noise and the sample chamber contained 

protein suspended in the same buffer. The machine then is able to determine a difference in heat 

that needs to be added to maintain both cells at the same heat level. At the time of protein 

denaturation, heat energy is lost due to the breakage of bonds. Thus, the machine itself is not 

required to put in more heat. This comparative analysis is then visualized in a heat capacity 

graph. The concentrations of protein used are typically 1-2mg/ml, therefore a volume of 0.7ml of 

the protein solution or buffer was placed into the appropriate cells after degassing. Degassing is 

critical since bubble formation and evaporation at higher temperatures interfere with the reading 

of the true heat values. Typically the sample or reference buffers were degassed for 15 minutes. 

The samples were subsequently loaded and pressure was applied to additionally reduce any 

bubble formation and evaporation. The temperature range was set between 25-120
o
C and the 

calorimeter was allowed to increase the temperature of the samples at a rate of 1
o
C per minute. 

Results 

 

Studies were initiated with the tRNA N
1
G37 methyl transferase protein of Aquifex 

aeolicus and purified protein was produced as outlined in materials and methods. Also the 

mesophilic Escherichia coli protein was produced and analyzed as well as the Thermotoga 

maritima TrmD‟s protein. All three of the proteins produced contained a 6 member His-tag 

group at the amino terminus. The his-tag allowed the protein to bind to the Ni-NTA column 

acquired from Qiagen. TrmD proteins were eluted using increasing amounts of imidazole. SDS 

PAGE gels in figures 9 and 10 demonstrate the degree of purity of a typical preparation of TrmD 

proteins of A. aeolicus and T. maritima respectively. When the proteins are prepared in the 

presence of a reducing agent such as beta-mercaptoethanol or DTT, and further electrophoresed, 
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the molecular size is observed to be approximately 28kD for all three TrmD enzymes. In the 

absence of a reducing agent the molecular size is approximately 60kD for both the T. maritima 

and A. aeolicus enzymes. This confirms that the subunits are joined by disulfide bonds. This is 

not the case for the E. coli enzyme.(data not shown) 

Pure protein samples are important for DSC and ITC experimentation due to the 

sensitivity of the experiments. In the case of DSC which monitors protein unfolding, increased 

amounts of non specific protein create distortions in the data leading to altered melting 

temperatures over a wide range. 

To begin characterization of these enzymes, the activity of these enzymes was 

determined as a function of temperature. Initially the enzyme assay developed by Hjalmarsson et 

al was utilized for all TrmD proteins; this assay was modified slightly to improve assay 

conditions. Because A. aeolicus and are both thermophilic enzymes and are very closely related 

based on the phylogenetic tree (figure 11) it was postulated that the activity profile as a function 

of temperature might be similar to the data published on Thermotoga maritima previously 

carried out in this laboratory.  
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Figure 9. A. aeolicus TrmD protein analyzed by means of SDS-PAGE analysis to 

determine the purity of the enzyme obtained   
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A. aeolicus his tag protein            A. aeolicus protein (after heating)     
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Figure 10.Purified his tagged T. maritima TrmD protein  

analyzed by means of SDS PAGE 
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Fortunately, the crystal structure of A. aeolicus was solved (Figure 4). This provided us the 

unique opportunity to examine the amino acid interactions within the 3-D structure which might 

contribute to the increased heat stability of the enzyme. Initially, the isolated expression vector 

which contained the A. aeolicus trmD gene was sequenced to ensure the validity of the trmD 

sequence (Figure 12) the same was also done for T. maritima's trmD (figure 13). An activity 

profile of the Aquifex enzyme was carried out at various temperatures (figure 14). The results 

observed show that the A. aeolicus protein is somewhat heat stabile during assay as compared to 

the E. coli protein which shows little activity at 50 degrees (data not shown). Next, A. aeolicus 

enzyme was incubated at 40 degrees Celsius in buffer, and aliquots assayed at 15 minute 

intervals at 25 degrees Celsius. These results demonstrate that at 40 degrees Celsius the 

enzymatic activity drops gradually to about 50 percent activity after an hour (figure 15). 
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Figure 11. A Phylogenetic tree of major phyla displaying the divergence 

from common ancestors  
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Figure 12. A Confirmation of the plasmid sequence for A. aeolicus. The isolated A. aeolicus 

plasmid was sequenced and compared to NCBIs BLAST to ensure that the correct species of 

TrmD was isolated.  
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>gb|AE000657.1| Aquifexaeolicus VF5, complete genome 

Length=1551335 

 

 Features in this part of subject sequence: 

tRNA guanine-N1 methyltransferase 

 

 Score = 1212 bits (656),  Expect = 0.0 

 Identities = 687/704 (98%), Gaps = 6/704 (0%) 

 Strand=Plus/Plus 

 

Query  118      CTTAAAGAAGGTGCTTGTGCTCTTTTAACCATTCCTTGAATGACTTTCCAGATAATATAC  177 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059605  CTTAAAGAAGGTGCTTGTGCTCTTTTAACCATTCCTTGAATGACTTTCCAGATAATATAC  1059664 

 

Query  178      TATTTAAAATGTCTTTTTCAAGTTCTGTCAAGTCTTTAGGTATTAAATCCGGTCTCTTTT  237 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059665  TATTTAAAATGTCTTTTTCAAGTTCTGTCAAGTCTTTAGGTATTAAATCCGGTCTCTTTT  1059724 

 

Query  238      TTACCGTGTTTTCTATCCTGTGCCATAACTTCCAGAGTTCTATCAATTTGTGGTGTCCTG  297 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059725  TTACCGTGTTTTCTATCCTGTGCCATAACTTCCAGAGTTCTATCAATTTGTGGTGTCCTG  1059784 

 

Query  298      AAAGGAGCTCTTCCGGAACCTTCATCCCCCTGTATTCCCTTGGTCTCGTGTAAACGGGGT  357 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059785  AAAGGAGCTCTTCCGGAACCTTCATCCCCCTGTATTCCCTTGGTCTCGTGTAAACGGGGT  1059844 

 

Query  358      AGCCAAGCCACCTGTTTTGAAAACTGTCTTCCTGAATGCTCTGAGGTTCACTCAAAACTC  417 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059845  AGCCAAGCCACCTGTTTTGAAAACTGTCTTCCTGAATGCTCTGAGGTTCACTCAAAACTC  1059904 

 

Query  418      CGGGGAGAACCCTGCTCACCGCGTCAATTACCGCGAGGGCTACGATTTCACCTCCCGAGA  477 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059905  CGGGGAGAACCCTGCTCACCGCGTCAATTACCGCGAGGGCTACGATTTCACCTCCCGAGA  1059964 

 

Query  478      GTATAAAGTCTCCAAGAGAAATTTCCATATCCACGATTTTCTTAACCCTCTCGTCCACTC  537 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1059965  GTATAAAGTCTCCAAGAGAAATTTCCATATCCACGATTTTCTTAACCCTCTCGTCCACTC  1060024 

 

Query  538      CCTCGTACCGCCCGCAAATTATCATTATCCTTTCCTTTTTAGAAAGTTCGTTTACCAGCT  597 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1060025  CCTCGTACCGCCCGCAAATTATCATTATCCTTTCCTTTTTAGAAAGTTCGTTTACCAGCT  1060084 

 

Query  598      TTTGGTTTAGTTTCTCTCCCCAGGGCTCGGTAATTAAAACGAANGGTTTTCCGTAATTTT  657 

                ||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||| 

Sbjct  1060085  TTTGGTTTAGTTTCTCTCCCCAGGGCTCGGTAATTAAAACGAAGGGTTTTCCGTAATTTT  1060144 

 

Query  658      CAACGACGTAATCGTAGGCTTCGTATATGGGTTCTGGTTTTAAAACCATCCCTGGAAGTC  717 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1060145  CAACGACGTAATCGTAGGCTTCGTATATGGGTTCTGGTTTTAAAACCATCCCTGGAAGTC  1060204 

 

Query  718      CGCCGTAGGGGACGTCGTCAACTTGTCCTTTTGGTGCAA-CTCCC-AAGGTCNATGGGAA  775 

                ||||||||||||||||||||||||||||||||||||||| ||| | |||||| ||||||  

Sbjct  1060205  CGCCGTAGGGGACGTCGTCAACTTGTCCTTTTGGTGCAAACTCACGAAGGTCTATGGGAT  1060264 

 

Query  776      A-ACTTCNACTTTNCC-TTNNTTATAGACGGCTG-ACTA-ACCG  815 

                | ||||| ||||| || ||  |||||| | |||  |||| |||| 

Sbjct  1060265  ATACTTCTACTTTTCCCTTTTTTATAGCCTGCTTTACTATACCG  1060308 

 

http://www.ncbi.nlm.nih.gov/nucleotide/6626248?report=genbank&log$=nuclalign&blast_rank=1&RID=P7PBT1GY011
http://www.ncbi.nlm.nih.gov/nucleotide/6626248?report=gbwithparts&from=1059606&to=1060379&RID=P7PBT1GY011
http://blast.ncbi.nlm.nih.gov/blast/dumpgnl.cgi?db=nr&na=1&gnl=gb|AE000657.1|&gi=6626248&term=6626248[gi]&RID=P7PBT1GY011&QUERY_NUMBER=1&segs=1059604-1060307
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Figure 13: BLAST analysis of T. maritima plasmid sequence  
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Thermotoga maritima MSB8, complete genome 

Length=1860725 

 

 Features in this part of subject sequence: 

tRNA guanine-N1 methyltransferase 

 

 Score = 1264 bits (684),  Expect = 0.0 

 Identities = 703/711 (99%), Gaps = 5/711 (0%) 

 Strand=Plus/Minus 

 

Query  2        AACAA-TACTATTATAGCC-ATTTGTCC-TTTCGTCC-GTTCCTTCGCTAAGAAAAGATC  57 

                ||||| | ||||||||||| |||||||| |||||||| |||||||||||||||||||||| 

Sbjct  1558029  AACAACT-CTATTATAGCCAATTTGTCCATTTCGTCCAGTTCCTTCGCTAAGAAAAGATC  1557971 

 

Query  58       TGGCCTCTTTGCCAGTGTTTTCTTTATGCTCTCCTTTCTTCTCCAGAGCTCCACCTTTTC  117 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557970  TGGCCTCTTTGCCAGTGTTTTCTTTATGCTCTCCTTTCTTCTCCAGAGCTCCACCTTTTC  1557911 

 

Query  118      GTGGTCTCCAGAGAGGAGAACATCTGGAACTTTCATACCCTTGTACTCATACGGCCTTGT  177 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557910  GTGGTCTCCAGAGAGGAGAACATCTGGAACTTTCATACCCTTGTACTCATACGGCCTTGT  1557851 

 

Query  178      GTAAACGGGATGATCGAGTAGTCCCTGATGAAACGATTCTCTTTCTACGGATTCTCTCTC  237 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557850  GTAAACGGGATGATCGAGTAGTCCCTGATGAAACGATTCTCTTTCTACGGATTCTCTCTC  1557791 

 

Query  238      GACAACACCCGGTACAAGCCTCACAACAGCGTCAGTTATGACCATGGCGGGGAGCTCTCC  297 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557790  GACAACACCCGGTACAAGCCTCACAACAGCGTCAGTTATGACCATGGCGGGGAGCTCTCC  1557731 

 

Query  298      ACCCGTGAGTATGTAGTCTCCTATGGATATTTCATCGTCAACGATACTCATCACTCTTTC  357 

                ||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| 

Sbjct  1557730  ACCCGTGAGTATGTAGTCTCCTATGGATATTTCATCGTCAACGATGCTCATCACTCTTTC  1557671 

 

Query  358      ATCTATTCCCTCGTACCTTCCACAGAATATAACGATGTCGTCCTTCTTTGAAAGTTCTTC  417 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557670  ATCTATTCCCTCGTACCTTCCACAGAATATAACGATGTCGTCCTTCTTTGAAAGTTCTTC  1557611 

 

Query  418      TGCTATCTTGTAGTTGAAAATTCTCCCCTGCGGACTTGTGAGAATAACGTAAGGTTTTCC  477 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557610  TGCTATCTTGTAGTTGAAAATTCTCCCCTGCGGACTTGTGAGAATAACGTAAGGTTTTCC  1557551 

 

Query  478      ATATTTTTCTACGTAACTTTCGTAGAATCTGAAGAAAGGTTCAGGTTTCATCACCATGCC  537 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557550  ATATTTTTCTACGTAACTTTCGTAGAATCTGAAGAAAGGTTCAGGTTTCATCACCATGCC  1557491 

 

Query  538      GTATCCGCCGCCGTATTGATAATCGTCAACCGTTCTGTGCCTGTCGGTGGTGTAATCCCT  597 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557490  GTATCCGCCGCCGTATTGATAATCGTCAACCGTTCTGTGCCTGTCGGTGGTGTAATCCCT  1557431 

 

Query  598      CAAATTCTCCACGTTTATCTCCACGATACCTCTTTCTACCGCCCGGGCTATGACGCCGTG  657 

                ||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||  

Sbjct  1557430  CAAATTCTCCACGTTTATCTCCACGATACCTCTTTCTACCGCCCGAGCTATGACGCCGTA  1557371 

 

Query  658      CTTCTTTATAACTTCGACCATTTCAGGGAATATAGTCACTATTGTGATTCT  708 

                ||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1557370  CTTCTTTATAACTTCGACCATTTCAGGGAATATAGTCACTATTGTGATTCT  1557320 

 

http://www.ncbi.nlm.nih.gov/nucleotide/12057205?report=gbwithparts&from=1557317&to=1558054&RID=PS6M4ZY6014
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Figure 14. A. aeolicus Activity as a function of assay temperature . Each data point is average of 

two assays and values shown are corrected for background counts.  
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Figure 15. Heat Stability of A. aeolicus protein at 40
 o
C using normal Assay conditions.  
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 It is known that the thermophilic proteins of A. aeolicus and T. maritima contain disulfide 

bonds which might stabilize subunits at higher temperatures. Dithiothreitol, a known reducing 

agent commonly employed to reduce disulfide bonds, was employed to determine if disulfide 

bonds found within both of the thermophilic organisms were important for thermal stability. In 

addition, the DTT was removed from the assays in order to determine the catalytic effects if any 

of the reducing agent on the enzyme. Also DTT was added to the reaction in excess in an attempt 

to sever the disulfide bond and evaluate the activity of the protein. Figure 16 again shows the 

effects of temperature on enzyme activity but now in the presence of 125 mM DTT. These 

results show little or no effect on enzyme activity at several temperatures. Next, the effects of 

elevated DTT at two different temperatures were assessed as a function of time figure 17. At 25 

degrees DTT had little effect on activity as a function of time. However, it can be seen that at 50 

degrees there is lower activity than at ambient temperature. After 4 minutes it can be seen that 

activity increases to higher levels.   

 Next, to determine if longer times  and higher concentrations of DTT affect activity, the 

incubation time was increased to 30 minutes in the presence of 250 mM DTT (Figure 18).Again 

no significant effects of DTT were seen even at these higher concentrations and extended time.  
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Figure 16.Effects of elevated DTT on enzyme activity. A. aeolicus DTT Temperature vs. 

Activity in the presence of a high concentration of DDT (125mM). A control assay in the 

absence of added DTT is shown as preformed at 25 degrees.  
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Figure 17.Effects of elevated DTT (250mM) on A. aeolicus TrmD activity at 40
 o
C and room 

temperature.  
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Figure 18. A. aeolicus in the presence of DTT assay performed at 37 
o
C incubation time in DTT 

was 30 minutes 
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Figure 19 Heat stability assay at 50
 o
C in the presence of normal concentrations of DTT (blue) 

and excess concentrations of DTT 125mM (red)  
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 Next, the stability of the Aquifex enzyme was assessed at an even higher temperature 

(50
o
C) in the presence then absence of 125 mM DTT. In this experiment samples were removed 

at 15 minute intervals and assayed at 25
o
C. It can be seen in figure 19 that in both the presence 

and absence of DTT the half life of the enzyme was approximately 30 minutes. This indicates 

that very high DTT concentrations have little effect on the heat stability of the enzyme. 

Heat stability of the Thermotoga enzyme 

 

Next, the activity of the T. maritima enzyme was examined as a function of temperature. 

As can be seen figure 20, this enzyme is optimally active at 37 degrees and maintains some 

activity at temperatures as high as 60 degrees.  The E. coli enzyme is totally inactive at this 

temperature.  However prolonged incubation of the enzyme up to 90 minutes led to considerable 

loss of activity.(Figure 21) 

These results were surprising because this is a thermophilic protein which survives at 

temperatures above 70 degrees. Nevertheless, the T. maritima enzyme retains significant activity 

at temperatures over 60 degrees under these assay conditions. 

 Next, both enzymes were compared with respect to effects of high levels of DTT on 

enzyme activity and stability. Similar results for both were observed indicating no decrease in 

activity in the presence of elevated concentrations of DTT. (Data not shown)  
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Figure 20: Activity Vs temperature Assay for T. maritima outlining the 

temperatures at which the enzyme displays optimal activity in response to 

increased temperatures 
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Figure 21: T. maritima TrmD protein Heat Stability Assay. The protein was incubated at 40
 o
C 

and assayed at 40
 o
C to determine if prolonged periods at elevated temperatures had an effect on 

activity. 
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Mutagenesis experiments 

 

Given the above results, mutations on both the A. aeolicus and T. maritima enzyme were 

attempted in order to determine if amino acid changes can be identified which might alter the 

stability and function of the enzymes. In the Aquifex aeolicus enzyme, two sites were selected 

based on the positions within the crystal structure. The first site, E235 located at the C terminus 

of the subunit, was chosen to be mutated to a cysteine creating a disulfide bond at the C terminal 

position, possibly increasing the stability of the protein at higher temperatures. The second site 

would be to eliminate the C20 disulfide bond.  

 In the T. maritima enzyme  mutation of the C245 residue was attempted. This mutation 

was not successfully obtained. However, this mutant had previously been prepared in this 

laboratory and did have subtle effects on heat stability of the Thermotoga enzyme. (Data not 

shown). 

The second site of interest within the A. aeolicus enzyme was C20 which constitutes the 

internal disulfide bond that links the two subunits together (Figure 4).  It has been proposed that 

loss of this bond reduces the heat stability of the enzyme. Unfortunately, this mutation was not 

obtained. However, another group has reported that mutations eliminating this bond did result in 

a less heat stabile protein as judged by denaturing gel analyses (Toyooka,T. 2008).  

Previous data performed on the E. coli enzymes suggest that an aspartate amino acid 

performs the critical deprotonation of the G37 N1 position, and when changed to alanine results 

in an inactive enzyme. (Christian,T. 2006, Christian,T. 2010) . In that study, placing Glutamic 

acid at the position (E169) resulted in a recovery of activity, indicating that a similar charged 

amino acid can work at this position. T. maritima has a Glutamic acid (Glutamate) at position 
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E166 which may carry out the same function as Asp (169) in E. coli and Asp (170) in Aquifex 

aeolicus. Therefore this residue was chosen for alanine mutagenesis.  

Lysine residues 103 and 104, are residues which were present in the two thermophilic 

trmD genes but not in any of the other mesophilic trmD orthologes, and were therefore selected 

for mutagenesis. These residues are located near the surface of the TrmD protein and may 

provide surface charges which may be critical in thermostabilization through interacting with 

surrounding water molecules.  Mutating lysines naturally found at the site to an alanine might 

disrupt the normal packing of the molecule with water causing the destabilization of the enzyme.  

 The Stratagene QuikChange® II Site-Directed Mutagenesis Kit was used to prepare all 

mutants. Unfortunately, all of the proposed mutants were not successfully produced as indicated 

above.  However, two T. maritima mutant TrmD proteins were produced. Both plasmids were 

isolated and sequenced before being transfected into new host cell lines for expression. Figure 22 

illustrates activity of the T. maritima KK enzyme as a function of temperature. The results of the 

double K mutant experiments indicate that the enzyme is able to function at room temperature, is 

more active at 37 degrees, and loses little activity at 50 degrees. Figure 23 contains a heat 

stability assay at 70 
o
C where the protein maintained its activity even after incubating for 60 

minutes. Thus it is clear that the Thermotoga enzyme functions quite well at elevated 

temperatures. 
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Figure 22.T. maritima Double lysine Mutant Activity Vs Temperature assay 

displaying the temperatures at which the protein optimally functions  
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Figure 23 Thermotoga double K mutant heat stability assay performed at 70 degrees and assayed 

at room temperature to determine if prolonged periods at elevated temperatures had an effect on 

activity. 
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 To ensure that the reaction was linear during the time course of the assay used in these 

experiments ,preliminary time trials were performed in which the reaction was stopped at 1, 2, 3, 

4, and 6 minutes. Figure 24 contains the results of the experiment indicting its continuous 

linearity well past the normal 4 min termination point we selected. 

What might the key residue be that deprotonates the G37 N1 position? 

 

The second mutant studied was the T. maritima E166A mutant, created to test the theory that 

glutamic acid is key in performing the deprotination of the N1 residue in G37. If this was the 

case, all activity of the TrmD protein would be lost. Because the enzyme retained activity (figure 

25) it was determined that the glutamate residue was not essential for catalytic activity. Also, 

further experiments were performed on this Thermotoga mutant protein to determine if the 

mutation caused any changes in thermostability. Figure 26 demonstrates that the protein is 

substantially less activity at 70 
o
C, It is concluded that this residue is not detectably important for 

thermostability. 

 Differential Scanning Calorimetry is a method used to examine the unfolding of proteins, 

by measuring the caloric difference between a sample cell and a reference cell while applying 

heat, recoding the uptake or release of heat in real time. The remaining figures 27-30 are DSC 

graphs obtained from A. aeolicus, E. coli, T. maritima, and T. maritima Mutant Double K mutant 

respectively. Unfortunately the DSC results obtained from the E166A mutation were 

inconclusive and not reported here. As can be seen, the E. coli enzyme is extremely heat 

sensitive and is essentially completely unfolded by 55 
o
C (figure 28). The Thermotoga enzyme 

shows remarkable stability and requires temperatures in  
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Figure 24.T. maritima Double K Mutant activity as a function of time. Performed to ensure that 

the assay remained within the linear range   
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Figure 25. T. maritima E166A mutation activity VS Temperature graph which outlines the 

optimal temperature at which the protein functions 
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Figure 26. E166A Heat Stability Assay heated at 70 
o
C and assayed at 25

 o
C to 

determine the resilience at 70
 o
C and the effects if any on the performance at 25

 o
C 
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Figure 27. Aquifex aeolicus TrmD protein DSC analysis (25 though 100 
o
C) to determine the 

denaturing pattern of the protein. The mutli peak graph is characteristic of a multi domain protein 
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Figure 28.E. coli DSC (25-100
o
C) analysis to determine the denaturing pattern of the protein. 

The sharp peak is indicative of a cooperatively unfolding protein showing little resistance to 

unfolding as the temperature is increased 
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Figure 29 T. maritima TrmD protein DSC analysis (25 though 120 
o
C) to determine the 

denaturing pattern of the protein 
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Figure 30: T. maritima K103A K104A Mutant DSC displaying the melting temperature of the 

enzyme in response to extreme temperatures. 
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excess of 100 
o
C for complete unfolding. The A. aeolicus enzyme shows intermediate heat 

stability and is not completely unfolded until about 90
o
C. Interesting it can be seen that multiple 

phases of unfolding can be seen figure 27. In comparison to the native protein, the mutant 

enzyme of T. maritima (K, 103,104, A) displayed little if any changes in thermal stability. 

Discussion 

 

In general, results presented here have shown that TrmD proteins are all somewhat active 

at room temperature and increase in methylation activity at higher temperatures before losing 

activity as a result of denaturation. In addition to enzymatic assay experiments, DSC experiments 

were conducted to determine the temperature at which unfolding occurs for various TrmD 

proteins. It was thought that these two measurements might show some correlation. 

A comparison of the thermophilic proteins from A. aeolicus and T. maritima with the 

mesophilic TrmD protein from E. coli revealed interesting facts about the structural components 

of thermostability. No major differences were observed when examining the primary sequence of 

the various TrmD proteins. Upon careful analysis of the primary sequences of A. aeolicus and T. 

maritima genes there are some subtle differences that may contribute to thermostability.  For 

example, unlike the E. coli gene there is a clear increase in proline residues within both A. 

aeolicus and T. maritima but not observed in E. coli. Studies performed on the alcohol 

dehydrogenase of Clostridium beijerinckii show an increase in proline content contributing to 

heat stability by means of decreasing the entropy of the unfolded state (Bogin,O. 1998). Also, 

after comparing the thermophilic sequences with the E. coli, there is an increase in the 

intermolecular ionic interactions. The importance of the intermolecular ionic interactions may be 

detrimental to the overall structural stability of the thermophilic proteins. Analysis of the primary 
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sequences shows a significant increase in the amount of lysine residues. Also there are two 

separate consecutive lysine residues present within both of the thermophilic proteins residues 17, 

18 and 103, 104 of T. maritima and residues 32, 33 and 106, 107 of A. aeolicus. 

Initially it had been shown in this laboratory that the T. maritima enzyme displayed low 

activity at room temperature. The studies here show that both enzymes show some activity at 

ambient temperatures. It is not clear at this point why these results are different. It may relate to 

subtle differences in assay techniques. What is clear is that both the A. aeolicus and T. maritima 

enzymes are more thermally stabile as judged by Differential Scanning Calorimetry. This could 

have been achieved by increasing the rigidity of the structure via the addition of more salt 

bridges and disulfide bonds for example. 

It was also proposed that the positioning of the disulfide bonds contribute to the enzymes 

ability to function at higher temperatures. One instance where the subunits are linked via 

disulphide bonds which partially contribute to heat stability can be seen in the 

archaeal Pyrococcus abyssi tRNA m
1
A57/58 methyltransferase. This protein is a homo tetramer 

that contains 4 intermolecular disulfide bonds that when mutated to serines decrease the Tm by 

16.5 degrees (Guelorget,A. 2010).The structures of A. aeolicus and T. maritima both 

thermophilic enzymes contain inter-subunit disulfide bonds but the positioning of the bonds are 

different within each protein. 

In T. maritima the c-terminal domains contain Cysteine residues which link the ends of 

the two subunits together via a disulfide bond. On the other hand the subunits of A. aeolicus are 

joined internally at the base of the subunits. This becomes significant when comparing the two 

enzymes. Because of the position of the disulfide bond the A. aeolicus enzyme is subject to 
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something we might call the “playful cat.” If one can imagine the water molecules that surround 

the enzyme vigorously interacting with the structure as a cat would a ball of yarn, once an end is 

exposed it makes it easier to unravel the remainder of the structure with continued thermal input. 

If the ends of the protein were linked together preventing separation, then the remainder of the 

structure would be less affected at higher temperatures thus preventing further denaturation. 

Aquifex aeolicus c-terminal domains of the enzyme are not linked together, making it 

theoretically easier to separate and denature the structure. On the other hand, Thermotoga 

maritima's TrmD contains disulfide bonds connecting the two subunits at the c-terminal domains 

theoretically adding additional thermal and structural stability to the protein. This enzyme was 

studied extensively by Toyooka (Toyooka,T. 2008)who observed incubated the protein at 85 

degrees then performed an SDSPAGE to determine how much of the protein precipitated in a 

given amount of time. The difference between the assay performed within our study and the one 

performed by Toyooka is the test of functionality. The gel demonstrates the structural stability of 

the protein at high temperature but not the overall activity of the protein at that temperature. 

Toyooka demonstrated via SDS PAGE that the protein is stable at high temperatures by means of 

a disulfide bond formed between the two subunits. 

 We have compared various TrmD‟s from different organisms with regard to optimal 

assay temperatures. The assay shown in Figure 14 was designed to test the ability of A. aeolicus 

to operate at room temperature. Most thermophilic proteins have a minimum operating 

temperature where below a specific temperature the protein is inactive. Both T. Maritima and A. 

aeolicus, which are very closely related in terms of the primary sequence having over 70% 

homology, are both quite active at room temperature as shown in figures 14 and 20. Also another 

surprising fact that was discovered while performing the heat stability assays is that both the T. 
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maritima and A. aeolicus TrmD proteins both lose activity at 40 
o
C which is shown in figures 15 

and 21. These facts raised questions about the mechanism of the reaction, the fact that two 

thermophilic proteins are losing activity in a heat stability assay at 40 
o
C over a period of an hour 

is unexpected. It is possible that these differences relate more to the stability of the tRNA 

substrate and it is possible that these enzymes might protect the tRNA molecule from unfolding 

at higher temperatures. We have previously shown within this lab via Circular Dichroism that the 

tRNA displays a Tm of 52 degrees Celsius. Also with the use of co-incubation studies using 

TrmD proteins and Elongation Factor – TU (EF-TU) with tRNA which binds the acceptor stem 

of the tRNA it has been shown to prevent the unfolding of tRNA thus increasing the melting 

temperature of tRNA. Finally, it is difficult to completely reconcile results seen in vitro as 

compared to the in vivo condition. 

Given these considerations, DSC was performed to determine the kinetics of unfolding as 

a function of temperature for each of the TrmD proteins. The first enzyme to be examined was 

the A. aeolicus TrmD protein, which displayed a unique multi peak curve which is shown in 

figure 27. Multiple peaks within the graph are indicative of multiple domains unfolding. Also the 

melting range for the protein is very broad which leads to the conclusion that there are some 

portions of A. aeolicus that are not as stable as the remainder of the enzyme. At the conclusion of 

the experiment, when the sample was removed from the well there was no precipitation meaning 

that the structural changes observed did not completely denature the protein. It is possible that 

the changes made to the protein could have rendered it inactive or reduced the activity of the 

protein which is reflected within the assay. The E. coli DSC, located in figure 28 has a very 

sharp peak at 55 
o
C followed by a negative peak of equal magnitude. This may be attributed to 

the complete unfolding of the protein which had precipitated within the sample well upon the 
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completion of the experiment. The result from Thermotoga maritima‟s DSC shown in Figure 29 

the story becomes even more interesting. The T. maritima TrmD is remarkably stable displaying 

a Tm of 110 
o
C, which is obtained by selecting the median of the peak observed. The observed 

Tm adds another level of complexity when comparing the data to the heat stability assays which 

began to lose activity at approximately 50 degrees Celsius. Small changes to the protein structure 

can affect the active site of the protein possibly reducing the activity within the assay.  

In reference to the standard assays performed that compared the activity to temperature, it 

is possible that the binding of the tRNA caused a decrease in the activity due to the RNA 

denaturing before being consumed in the methyl transferase reaction. This leads to the possibility 

that the tRNA is beginning to denature before it can bind to the thermophilic proteins of T. 

maritima and A. aeolicus which should protect the tRNA at high temperatures. Unfortunately, 

the DSC of tRNA was not clearly defined, and a curve was not extrapolated from the results. A 

tRNA DSC graph would have provided key information about the Tm, proving that the binding 

of tRNA to the TrmD enzyme protects is from the unfolding. However, other CD studies in this 

lab show that tRNA melts quite readily by 50 degrees and can be stabilized by the T. maritima 

enzyme (Brueggemann, 2004) as well as by EfTu. It could be that the A. aeolicus enzyme may 

not effectively do this in comparison to the T. maritima enzyme.  

Regrettably, neither of the A. aeolicus mutations were obtained after several efforts, but 

the two T. maritima mutations E166A and K103A, K104A (double mutation) was created. The 

E166A mutation was proposed based on the primary amino acid sequence along with the 

hypothetical crystallographic overlay. The purpose of the mutation was to knock out activity 

within the protein by inhibiting the deprotonation step within the reaction. The E. coli TrmD 

protein has been shown to use aspartic acid to aid in this step, but based on the hypothetical 
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structure, the aspartic acid seemed to be out of range for the reaction to take place. By changing 

the Glutamic acid to an Alanine with the goal to inhibit activity of the enzyme and confirm the 

role of glutamate within T. maritima as opposed to Aspartate. Unfortunately, that was not the 

case as it displayed activity (figure 25) similar to the other experiments performed and it also 

decreased in activity at 50
o
C. The DSC results of the E166A mutant were unfortunately, 

inconclusive. This was an unexpected result as we hoped to determine the role of the glutamate 

residue in reference to the stability to the protein. 

The lysine 103 104 double mutant showed impressive stability at the higher temperatures. 

When assayed at 50
o
Cit maintained the same activity displayed at 40 

o
C, which is a first amongst 

the TrmD proteins that have done so. The results raised questions about the rate of the reaction 

and the possibility that the reaction was going to completion providing an inaccurate activity 

curve. Figure 24 shows the progressive linear increase in the activity from one minute to 6 

minutes, proving that the reaction is not going to completion. The heat stability assay performed 

on the enzyme displayed activity at 70 
o
C which differs from all of the other TrmD assays. Based 

on this info, it was concluded that the active site of the double lysine mutant is better protected in 

that conformation when compared to all of the other TrmD proteins, allowing the reaction to 

proceed under normal conditions. The mutations made on the T. maritima protein were done so 

without a crystal structure with the intention of destabilizing the thermophilic stability. Figure 30 

contains the DSC of a double lysine mutant, revealing the incredible resilience at the upper 

temperature extremes with what appears to be an incomplete biphasic melting curve. Because the 

melting curve is incomplete the Tm is unable to be determined.  

The upper limits of the DSC were restricted to a maximum of 120 
o
C because of 

instrument limitations; an additional adapter is needed to accurately determine mcal/min. To be 
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completely sure about the accuracy of the instrument the experiments were set not to exceed 

110-115
o
C. The same limitation is also applied to the lower temperature settings in which the 

graphs began at approximately 25
o
C. 

Because both of the thermophilic TrmD‟s contain disulfide bonds and it was proposed 

that the addition of excess DTT to the assay buffer should reduce the activity of the enzyme at 

higher temperatures. To begin this process A. aeolicus enzyme was isolated in the absence of 

DTT. The assay conducted in figure 16 was conducted in the presence and absence of DTT at 

25
o
C. The removal of DTT from the assay decreased the activity of the enzyme approximately 

50%, but in the presence of DTT the remaining results were similar to previously conducted 

experiments. This is consistent with previously published results (O'Dwyer,K. 2004). The next 

experiment shown in figure 17 was carried out in order to determine the effects of DTT as a 

function of time on the disulfide bonds within the protein which might affect thermal stability. 

The pre-incubation of protein with DTT for a set time was proposed to determine if the disulfide 

bonds could be dissociated more completely. Initially time points of 5 and 10 minutes were 

selected but there was no notable difference in enzyme activity. Figure 18 displays the results of 

three separate incubation time points of 0, 10, and 30 minutes in 250mM DTT. Based on the 

results there was no significant differences in activity through 30 minutes in 250mMDTT. In 

addition to this experiment a heat stability assay in the presence and absence of excess DTT was 

conducted as shown in figure 19. These results demonstrate that the protein can function in the 

presence of high concentrations of DTT. This suggests that the disulfide bond is not absolutely 

critical for thermal stability. However, subtle effects here might be additive and important in 

vivo. This effect was also seen in previous studies within our lab in which TrmD was incubated 

in the presence of DTT and observed via circular dichroism. This experiment produced a result 
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in which there was no change in elipticity in the presence of an increased concentration of DTT. 

Results of enzymatic activity assays also confirm the fact that DTT does not dramatically affect 

the activity of the enzyme. Heat stability assays were conducted in the presence and absence of 

excess DTT which resulted in minimal differences in enzymatic activity.  

 Future studies of the TrmD enzymes will look into more mutations of amino acid 

residues. Observing the effects of mutating the non conserved proline residues located within the 

thermophilic proteins of A. aeolicus and T. maritima will be the first of many mutations. Proline 

residues have been proposed to reduce the entropy of the unfolded state (Bogin,O. 1998). This is 

significant because proline residues are usually located within alpha helixes and beta turns 

because of their unique structural conformation they permit the looping of helical structures.  

A comparative analysis of both double lysine mutations 103,104 in T. maritima and 106, 

107 in A. aeolicus would be key in determining the particular residues that are important in 

maintaining thermostability. If the results are comparable to that of T. maritima it may be 

proposed that those residues have no effect on thermostability. Ideally the mutations made would 

not affect the activity of the protein at ambient temperatures but as the temperature increases the 

effects are observed, which corresponds to a DSC graph.  

Additional mutations that can be performed would be the addition of disulfide bonds 

within E. coli in an attempt to mimic the thermophilic proteins. This would demonstrate the 

significance of the disulfide bonds in reference to thermostability. Each mutation performed on 

A. aeolicus and T. maritima can be mimicked and reversed E. coli. Mutating certain proline 

residues within E. coli that are only present within the thermophilic organisms should provide 

insights into the importance of proline residues on thermostability. 
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Overall, it has been shown that the Aquifex and Thermotoga enzymes are quite heat 

stabile as judged by DSC and that the Thermotoga enzyme is more stable than the Aquifex 

enzyme. The effect of temperature on enzyme activity shows much less thermostability. It is 

clear that more experiments need to be performed in order to determine why these results don‟t 

correlate well with thermal denaturation profiles. It will be interesting to determine if the 

presence of ligands alter the heat stability assays as well as specific assay conditions. Finally, a 

more extensive mutagenesis study will have to be done to better identify structural features 

involved in thermal stability.  
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